Geometrie analitica si diferentiala

Geometrie analitica si diferentiala

Conica

Se numeste conica o curba plana definita intr-un reper cartezian ortonormat $$\{O;\vec{i},\vec{j}\}$$ printr-o ecuatie algebrica de gradul al doilea de forma

$$a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_{13}x+2a_{23}y+a_{33}=0,$$

unde $$a_{ij}\in\mathbb{R},\ i,j\in\{1,2,3\},\ a_{11}^2+a_{12}^2+a_{22}^2>0$$ (adica cel putin unul dintre coeficientii termenilor de gradul al doilea este nenul), iar $$(x,y)$$ sunt coordonatele carteziene in reperul dat ale unui punct oarecare al conicei.

Tags:
Skip Navigation

Navigation