Geometrie analitica si diferentiala

Geometrie analitica si diferentiala

Paraboloid eliptic

Se numeste paraboloid eliptic o cuadrica pentru care exista un reper ortogonal in spatiu in raport cu care suprafata are ecuatia canonica
@d\frac{x^2}{a^2}+\frac{y^2}{b^2}=2z,@d unde $$a>0,b>0$$.

Tot paraboloizi eliptici sunt si cuadricele de ecuatii @d\frac{x^2}{a^2}+\frac{z^2}{c^2}=2y\text{ sau }\frac{y^2}{b^2}+\frac{z^2}{c^2}=2x.@d

Tags:
Skip Navigation

Navigation